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Partition functions and finite-size scalings of Ising model on helical tori
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The exact closed forms of the partition functions of a two-dimensional Ising model on square lattices with
twisted boundary conditions are given. The constructions of helical tori are unambiguously related to the
twisted boundary conditions by virtue of the SL�2,Z� transforms. The numerical analyses on the deviations of
the specific-heat peaks away from the bulk critical temperature reveal that the finite-size effect of herical tori
is independent of the chirality.
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Since Onsager obtained the exact solution of the two-
dimensional �2D� Ising model with a cylindrical boundary
condition �BC� in 1944 �1�, the exact treatments of Ising
models on different 2D surfaces have been continuously at-
tempted. Recently, Lu and Wu �2� have provided analytical
treatments for the Ising models with BCs of a particular
class, including the Möbius strip, the Klein bottle, and the
self-dual BC. The exact study of the model subject to BCs is
of fundamental importance. First, it represents new chal-
lenges for the unsolved lattice-statistical problems �1–10�.
Second, it is crucial for the finite-size analysis �11–15�. Fur-
thermore, it provides an optimal test bed for the predictions
of the conformal field theory �18�. Numerical simulations, on
the other hand, can be complementary to the exact study and
have provided very rich content for the theory of finite-size
scalings �12�. For example, based on the exact analysis of
dimer statistics, by Lu and Wu ��2�, 1998�, Kaneda and Ok-
abe �13� have achieved, via computer simulations, a more
thorough understanding of the finite-size scaling behavior of
the Ising models subject to the boundary types of the Möbius
strip and the Klein bottle. While interesting numerical stud-
ies, concerning the excess number of percolation �14� and
the Binder parameter of the Ising model �15�, for the twisted
BCs further proceed, the gap of lacking the corresponding
closed form of the partition functions has to be filled.

Boundary conditions are characterized by sets of primi-
tive vectors, which specify the periodicity in the correspond-
ing directions �16�. Helical BCs are basically considered by
pairwise joining the edges of the sheet spanned by any two
orthogonal primitive vectors. This then ends up with tori of
distinct orientations, labeled by the chirality �17�, with re-
spect to the underlying lattice, as depicted in Fig. 1. The
conventional periodic BC is referred to as the helical BC
with trivial chirality. In contrast to the Klein bottle and the
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Möbius strip, the twisted BCs are formed by cutting, rewind-
ing, and rejoining the tori without antipode. One of the
primitive vectors for the twisted BCs, a�2 of �a�1 ,a�2� for the
example shown in Fig. 2, coincides with one of the basic
vectors that specify the lattice orientation. However, there
exist equivalence relations among the primitive vector pairs
on the lattice. This is given by the SL�2,Z� transform, which
is the prototype of the modular symmetry discussed in the
context of conformal field theory �18�. Moreover, the helical
BCs, specified by the primitive vectors �a�1� ,a�2�� in the ex-
ample of Fig. 2, can be further shown to be the subclass of
the twisted BCs by the SL�2,Z� transforms.

In this work, we first obtain the general form of the par-
tition functions subject to the twisted BCs by employing the
technique of the Grassman path integral �8�. The effective
range of the twisting factor � against the conventional aspect
ratio A is given. Subsequently, a helical BC acquires an un-
ambiguous prescription of twisted BC via the SL�2,Z� trans-
form. Then, the finite-size shift of the specific-heat peak
from the bulk critical temperature is numerically investi-
gated. For the helical BCs, the scaling behavior turns out to

FIG. 1. The formation of helical tori by pairwise joining the
edges of the rectangle spanned by any orthogonal set of vectors on
the lattice plane: �a� the direction of the primitive vectors coincides
with the lattice orientations for the conventional toroidal BC and �b�

the helical tori are formed for the noncoincidence.
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be chirality independent. Finally, some notes on the finite-
size scaling behaviors are given.

Consider a M �N square lattice with the coordinates of
the lattice sites specified in the form of x̂m+ ŷn. The partition
function of the Ising model is given as ZM,N
= �2 cosh��J1�cosh��J2��MNQM,N with the reduced partition

function QM,N=�m=1
M �n=1

N 1
2Q̂m,n, where Q̂m,n= 1

2���mn���1
+ t1�m,n�m+1,n��1+ t2�m,n�m,n+1��. Here, we use the notations,
ti=tanh��Ji� with Ji, for i=1,2, denoting the coupling con-
stants along the x and y directions, and �=1/kBT. The BCs
suggest the identifications of the spin variables, whose loca-
tions are related by the pair of primitive vectors, say, a�1 and
a�2. Basically, there are two types of twistings: One is referred
to as TwI�M ,N ,d /M� specified by the primitive vectors
�a�1=Mx̂+dŷ ,a�2=Nŷ� as shown in Fig. 2, and the other is
referred to as TwII�M ,N ,d /N� specified by �a�1=Mx̂ ,a�2=dx̂
+Nŷ�.

According to Plechko (�8�a��), the reduced partition func-
tion takes the form of

QM,N = �
��mn�

�
m=1

M

�
n=1

N

�m,n
�1� �m,n

�2� �1�

with

��1� = da da* eam,nam,n
*

�A A* � ,

FIG. 2. Equivalence between the BCs in helical and twisted
schemes prescribed by �a�1 ,a�2� and �a�1� ,a�2��, respectively, on an M
�N square lattice. For the helical BC, the setting Q1 / P1=Q2 / P2

ensures that the two primitive vectors are orthogonal. On the other
hand, twisting is generated by a d-unit traverse shift.
m,n 	 m,n m,n m,n m+1,n
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�m,n
�2� =	 dbm,ndbm,n

* ebm,nbm,n
*

�Bm,nBm,n+1
* � , �2�

where Am,n=1+am,n�m,n, Am,n
* =1+ t1am−1,n

* �m,n, Bm,n=1
+bm,n�m,n, and Bm,n

* =1+ t2bm,n−1
* �m,n. In the above equations

two pairs of conjugate Grassman variables, �am,n ,am,n
* � and

�bm,n ,bm,n
* � have been introduced. As technically known from

Refs. �8–10�, the handling of the boundary Boltzmann
weights,

�� = �
n=1

N

�M,n
�1� �

m=1

M

�m,N
�2� , �3�

remains central in the treatments. It turns out to be instruc-
tive to reexamine the paradigm that solves this problem in
the original periodic settings �m+M,n=�m,n and �m,n+N=�m,n.

In Ref. �8�a��, the boundary Boltzmann weights �� are
rearranged such that ��=�	
�1

+�	
�2
+�	
�3

−�	
�4
subject

to the BCs �is, imposed on the Grassman variables, with

�	 =	 �
n

N

A� 1,n
* �

m

M

B� m,1
* �

n

N

A� M,n�
m

M

B� m,N, �4�

where the arrows indicate the ordering for the multiplica-
tions, and we employ the notation � for all the coming
weighted integration over relevant Grassman variables. Sub-
sequently, mirror ordering is applied routinely and furnishes
the simple expression of pure Grassmanian integrations,

QM,N =
1

2
�
G
�1

+ 
G
�2
+ 
G
�3

− 
G
�4
� , �5�

G =	 exp��
m,n

M,N

�am,nbm,n + t1t2am−1,n
* bm,n−1

* + �t1am−1,n
*

+ t2bm,n−1
* ��am,n + bm,n�� , �6�

where the integrations can be diagonalized and carried out
straightforwardly �8�.

The above reviewing paragraph suggests that the modifi-
cation is only essential for the twisted BC in the key steps,
i.e., from Eq. �3� to Eq. �4�. For TwI, the �M,n

�1� term in Eq. �3�
is calibrated in relation to the toroidal term. Then, this leads
to

�7�
where the BC �m+M,n+d=�m,n has been explicitly employed.
Reordering of the first three products in Eq. �7� is essential
such that the form of Eq. �4� can be achieved. By recursive
use of the identity for the permutation of the Grassmanian

functions �8�, we employ, instead,
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XYZ �
1

2
�ZYX− − Z−Y−X− + ZY−X + ZY−X−� , �8�

where X, Y, and Z stand for the corresponding three objects
and the superscript “�” denotes flipping the sign of the
Grassman variables. Accordingly, the form of Eq. �4� is
achieved, which implies Eq. �5�. Note that the form of Eq.
�6� is preserved under twisting. However, the BCs imposed
on the Grassman variables are modified in response to the
corresponding sign flipping appearing in the deduction of Eq.
�8�. For convenience, the compact notation as �i= �±, ± � can
be employed as follows. The first sign in the parentheses
corresponds to am,N

* = ±am,0
* , and the second one is for

aM,n+d
* = ±a0,n

* . The BCs are given as �1= �−,−�, �2= �+,−�,
�3= �−, + �, and �4= �+, + �. Henceforth, the exact partition
function is straightforward.

For TwI with the twisting factor ��d /M, the reduced
partition function is

QM,N
� =

1

2
�IM,N

� �1

2
,
1

2
� + IM,N

� �1

2
,0� + IM,N

� �0,
1

2
�

− sgn�T − Tc

Tc
�IM,N

� �0,0�� , �9�

IM,N
� �
,
̄� = �

p=1

M

�
q=1

N ��0 − �1 cos�2�� p + 


M
−

��q + 
̄�
N

��
− �2 cos�2��q + 
̄

N
��1/2

, �10�

where �0= �1+ t1
2��1+ t2

2�, �1=2t1�1− t2
2�, and �2=2t2�1− t1

2�.
In addition, the function sgn�x� denotes the sign of the value
x, and Tc is the critical temperature of the bulk system.
Meanwhile, for TwII, the expression of Eq. �9� remains the
same along with the interchange for the roles of p and q and
with �=d /N in Eq. �10�.

The expression of Eq. �9� implies QM,N
� =QM,N

−� , which re-
flects the fact that a twisting either clockwise or counter-
clockwise is indistinguishable. On employing the transform
matrices M�SL�2,Z� explicitly, pairs of primitive vectors
are related among each other in the manner of

�a�1�

a�2�
� = M�a�1

a�2
� . �11�

Consider TwI, for example. The choice of matrix elements
M11=1, M12=J�Z, M21=0, and M22=1 gives rise to the
new pairs of primitive vectors, �a�1�=Mx̂+ �d+N�ŷ ,a�2�=Nŷ�,
which prescribes the same BC. As evidence, the equality,
QM,N

� =QM,N
�+JA with the conventional aspect ratio A=N /M, can

be explicitly checked. Thus, the effective range of � is
0��A. Furthermore, TwI alone suffices for the full pre-
scription of the twisted BCs, because the equivalence
TwI�M ,N ,�=A /J��TwII�JM ,N /J ,1 /�� can be achieved by
virtue of M11=J�Z, M12=−1, M21=1, and M22=0.
Again, the partition function of Eq. �9� appears to fulfill
these relations.
The BC of the helical tori counts on the orthogonal primi-
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tive vector pair, a�1�= x̂P1+ ŷQ1 and a�2�=−x̂Q2+ ŷP2, where the

two radii for the torus are given as Li=�Pi
2+Qi

2 for i=1,2.
Let the helical system be denoted by Hl�B ,L1 ,��, where the
chiral aspect ratio is defined as B=L2 /L1, and the chirality is
�=Q1 / P1�Q2 / P2. Based on Eq. �11� with M11= P1 /M and
M21=−Q2 /M, we can furnish the equivalent structure,
Hl�B ,L1 ,���TwI�A ,M ,��, by using the relations

M21 = − B�M11, �12�

1 = M11M22 − M21M12, �13�

A =
�M21�2

B
+ B�M11�2, �14�

� = −
M21M22

B
− BM11M12. �15�

Some notes on the uniqueness of the relations above are
given as the following: The �M12,M22� pair is unambigu-
ously determined up to M11 and M21 for 0��A. This is
because shifting �M12,M22� by appending �JM11,JM21�
for "J�Z leaves Eq. �13� invariant but only deviates the
result of Eq. �15� from � to �+JA. Meanwhile, the allowable
region for �M12,M22� appropriate for 0��A is of ex-
actly one vector section �M11,M21�. In addition, the ambi-
guity relating to size dependence can be removed by the
coprime properties between M11 and M21, which ensures
the solubility of the integer pair �M12,M22� subject to Eq.
�13�. Consequently, a helical two-tuple �B ,�� corresponds to
a unique pair �A ,�� for the twisting in the effective range.
Moreover, it can be shown that helical tori bearing with dif-
ferent geometry cannot be mapped into each other by
SL�2,Z� transforms; thus the distinction of the helical tori via
the twisting parameters is unambiguous.

The deviation of the specific-heat peak Tmax of a finite
system away from the bulk critical temperature Tc, defined as
�= �Tmax−Tc� /Tc, is referred to as the critical shift of the
system. Based on the parametrization of TwI�A ,M ,�� and
the exact partition function of Eq. �9� with an isotropic
coupling, we study the finite-size scaling of � for systems
with twisted BCs. The numerical results of ��A ,�� vs 1/L
=1/�MN are shown in Fig. 3. These suggest that two param-
eters, A and �, are required to specify the scaling behaviors,
and the leading scaling behavior of ��A ,�� is ��A ,��
�c�A ,�� /L with the constant c�A ,�� increasing as � in-
creases for a given A. However, there is an exceptional case
A=1 for which, c�A ,�� is independent of �.

For helical BCs, the critical shifts ��B ,�� are determined
by first employing Eqs. �12�–�15� to find the corresponding
twisted BCs and then calculating the equivalent ��A ,��.
Note that the partition function cannot differentiate the roll-
ing up direction in forming the tori, hence there is no dis-
tinction between the chiralities � and −�, and we take
��0. We also note that once Hl�B ,���TwI�A ,�� is estab-
lished by a SL�2,Z� transform, say M�a�, the equivalence
Hl�1/B ,1 /���TwI�A ,−�� is then followed by the SL�2,Z�

�b� �b� �a� �b� �a� �b�
transform M with M11 =−M21 , M21 =−M11 , M12
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=M22
�a�, and M22

�b�=M12
�a�. Thus, the equality ��B ,��

=��1/B ,1 /�� holds, and we may take B�1 in calculating
��B ,�� for various � values. The results of ��B ,�� vs
1/L=1/�L1L2=1/�MN are shown in Fig. 4. The finite-size
scaling of ��B ,�� for a given B value is chirality indepen-
dent. The leading scaling behavior takes the form ��B ,��
�c�B� /L in which the constant c�B� flips its sign at B=b0

and 1/b0 with b0�3. This sign reversal was anticipated by
Ferdinand and Fisher �11� for the conventional periodic BC,
where the exact b0 value was determined as b0=3.139 27. . .,
a result which now applies for all the helical tori.

In conclusion, we provide the complete description for the
finite-size effect of an Ising model subject to the helical BCs,
a subclass of the twisted BCs. This is explicitly done by first
solving the exact form of the partition function appropriate
for all the twisted BCs and then numerically calculating the
critical shifts. The finite-size effect is found to be chirality
independent. This remarkable fact basically supports the in-

FIG. 3. Plotting ��A ,�� against 1 /L for A=1,2 ,3 ,4 with �=0,
��� 0.1A ���, 0.2A ���, 0.3A ���, 0.4A ���, and 0.5A ���. The
scaling behaviors are obviously deviated by �. Nonetheless, for A
=1 no splitting is found with respect to the twisting factors.
variance of the scaling behavior of the partition function un-

�12� M. E. Fisher, in Critical Phenomena, Proceeding of the Inter-
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der rotation of the primitive vector pair subject to BCs, con-
jectured in Ref. �15� which, however, gave the invariant
aspect ratio as A / �1+�2� �19� coinciding with the chiral as-
pect ratio B only for �=�. The particular coincidence as the
finite-size scaling of critical shift independent of � and � for
A=1 and B=1 suggests further interesting points exceeding
beyond the rotational invariance. For consistency, we stress
the fact that A=1 does not nontrivially permit any helical
structure, as one may observe in Eqs. �12�–�15�. As a final
remark, Ising systems with helical BCs, a subclass of the
twisted BCs, form themselves a reasonable ensemble, and
their generalization to the twisted class may also possess
interesting issues.
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FIG. 4. The plot of ��B ,�� vs 1/L for a given chiral aspect ratio
B. Results of different chiralities � collapse into one curve and the
curves of both ��B ,�� and ��1/B ,1 /�� vs 1/L coincide.
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